Trigomania

More than you ever wanted to know about trigonometry

Rectangular Coordinate System

\((x, y) \)

\(x \)

\(y \)

Rectangular Coordinate System

\((3, 5) \)

\(x \)

\(y \)
Rectangular Coordinate System

Quadrant I
Quadrant II
Quadrant III
Quadrant IV

Pythagorean Theorem

\[a^2 + b^2 = c^2 \]

Pythagorean Theorem

\[a = \sqrt{c^2 - b^2} = \sqrt{4^2 - 3^2} = \sqrt{16 - 9} = \sqrt{7} = 3.6 \]
Basic Trig Functions

- **Sin** $\theta = \frac{\text{opposite}}{\text{hypotenuse}}$
- **Cos** $\theta = \frac{\text{adjacent}}{\text{hypotenuse}}$
- **Tan** $\theta = \frac{\text{opposite}}{\text{adjacent}}$

Soh-Cah-Toa

Example 1

- $\sin 30^\circ = \frac{2}{4} = 0.5$
- $\theta = \sin^{-1}(0.5) = 30^\circ$

Example 2

- $b = 5(\cos 35^\circ) = 5(0.819) = 4$

Adjacent side

Hypotenuse

Opposite side
Trig Relationships

\[\tan \theta = \frac{\text{opp}}{\text{adj}} \]
\[\tan \theta = \frac{\text{opp/hyp}}{\text{adj/hyp}} \]
\[\tan \theta = \frac{\sin \theta}{\cos \theta} \]

Complement Angles

\[90^\circ + \theta + \phi = 180^\circ \]
\[\theta + \phi = 90^\circ \]
\[\phi = 90^\circ - \theta \]
\[\phi = 90^\circ - \theta \]
Complement Angles

opposite for θ is adjacent for φ and vice versa

\[
\sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \cos \varphi
\]

\[
\cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \sin \varphi
\]

\[
\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \cot \varphi
\]

Polar Coordinate System

\[
\sin \theta = \frac{y}{r} \Rightarrow y = r \sin \theta
\]

\[
\cos \theta = \frac{x}{r} \Rightarrow x = r \cos \theta
\]

Polar Coordinate System

\[
\sin \theta = \frac{y}{r} \Rightarrow \sin \theta \text{ is positive}
\]

\[
\cos \theta = \frac{-x}{r} \Rightarrow \cos \theta \text{ is negative}
\]
Polar Coordinate System

<table>
<thead>
<tr>
<th>Sign of</th>
<th>Quad I (0 ≤ θ ≤ 90)</th>
<th>Quad II (90 ≤ θ ≤ 180)</th>
<th>Quad III (180 ≤ θ ≤ 270)</th>
<th>Quad IV (270 ≤ θ ≤ 360)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>y</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sin θ</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cos θ</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>tan θ</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Supplement Angle

Quad II

\[-x, y\]

\[\theta\]

\[r\]

\[x\]

\[y\]

\[\theta + a = 180^\circ \Rightarrow a = 180^\circ - \theta\]

\[\sin \theta = y/r = \sin a\]

\[\cos \theta = -x/r = -\cos a\]

\[\tan \theta = y/-x = -\tan a\]

Supplement Angle

Quad III

\[-x, -y\]

\[\theta\]

\[r\]

\[x\]

\[y\]

\[\theta = 180^\circ + a \Rightarrow a = 180^\circ - \theta\]

\[\sin \theta = y/r = \sin a\]

\[\cos \theta = -x/r = -\cos a\]

\[\tan \theta = y/-x = \tan a\]
Supplement Angle

\[
\begin{align*}
\theta &= 360^\circ - \alpha \\
\sin \theta &= \frac{y}{r} = -\sin \alpha \\
\cos \theta &= \frac{x}{r} = \cos \alpha \\
\tan \theta &= \frac{-y}{x} = -\tan \alpha \\
\end{align*}
\]

What is it good for?

- Extends the trig functions to any angle — positive or negative and as large as you want it.
- Allows you to quickly check the sign of the trig functions for any angle by noting what quadrant it is in.
- Enables you to visualize things like: \(\cos 120^\circ = -\cos 60^\circ = -\sin 30^\circ \) which allows you to rewrite expressions in forms that are easier to work with.

Special Triangles
Special Triangles

<table>
<thead>
<tr>
<th>θ</th>
<th>sin θ</th>
<th>cos θ</th>
<th>tan θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>30°</td>
<td>0.5</td>
<td>(\sqrt{3}/2)</td>
<td>1(\sqrt{3})=0.577</td>
</tr>
<tr>
<td>45°</td>
<td>1/(\sqrt{2})=0.707</td>
<td>1/(\sqrt{2})=0.707</td>
<td>1</td>
</tr>
<tr>
<td>60°</td>
<td>(\sqrt{3}/2) = 0.866</td>
<td>0.5</td>
<td>(\sqrt{3}/1)=1.732</td>
</tr>
<tr>
<td>90°</td>
<td>1</td>
<td>0</td>
<td>infinite</td>
</tr>
</tbody>
</table>