6.62. **Solve:** (a) The terminal velocity for a falling object is reached when the downward gravitational force is balanced by the upward drag force.

\[F_G = D \]

\[mg = bv_{term} = 6\pi\eta R v_{term} \]

\[\Rightarrow v_{term} = \frac{mg}{6\pi\eta R} \]

(b) The mass of the spherical sand grain of density \(p = 2400 \text{ kg/m}^3 \) is \(m = \rho \left(\frac{4}{3}\pi R^3 \right) \).

Thus

\[v_{term} = \frac{2\rho g R^2}{9\eta} = \frac{2}{9} \left(\frac{2400 \text{ kg/m}^3}{(9.80 \text{ m/s}^2)(5.0 \times 10^{-4} \text{ m})^2} \right) = 1.3 \text{ m/s} \]

The time required for the sand grain to fall 50 m at this speed is \(t = \frac{50 \text{ m}}{1.3 \text{ m/s}} = 38 \text{ s} \).

Assess: The speed of 1.3 m/s for a sand grain falling through water seems about right.