Chapter 31 Homework Solutions

1. **REASONING** For an element whose chemical symbol is X, the symbol for the nucleus is \(^A_Z X \), where \(A \) represents the total number of protons and neutrons (the nucleon number) and \(Z \) represents the number of protons in the nucleus (the atomic number). The number of neutrons \(N \) is related to \(A \) and \(Z \) by Equation 31.1: \(A = Z + N \).

SOLUTION For the nucleus \(^{208}_{82} \text{Pb} \), we have \(Z = 82 \) and \(A = 208 \).

a. The net electrical charge of the nucleus is equal to the total number of protons multiplied by the charge on a single proton. Since the \(^{208}_{82} \text{Pb} \) nucleus contains 82 protons, the net electrical charge of the \(^{208}_{82} \text{Pb} \) nucleus is

\[
q_{\text{net}} = (82)(+1.60 \times 10^{-19} \text{ C}) = +1.31 \times 10^{-17} \text{ C}
\]

b. The number of neutrons is \(N = A - Z = 208 - 82 = 126 \).

c. By inspection, the number of nucleons is \(A = 208 \).

d. The approximate radius of the nucleus can be found from Equation 31.2, namely

\[
r = (1.2 \times 10^{-15} \text{ m}) A^{1/3} = (1.2 \times 10^{-15} \text{ m})(208)^{1/3} = 7.1 \times 10^{-15} \text{ m}
\]

e. The nuclear density is the mass per unit volume of the nucleus. The total mass of the nucleus can be found by multiplying the mass \(m_{\text{nucleon}} \) of a single nucleon by the total number \(A \) of nucleons in the nucleus. Treating the nucleus as a sphere of radius \(r \), the nuclear density is

\[
\rho = \frac{m_{\text{total}}}{V} = \frac{m_{\text{nucleon}} A}{\frac{4}{3} \pi r^3} = \frac{m_{\text{nucleon}} A}{\frac{4}{3} \pi (1.2 \times 10^{-15} \text{ m}) A^{1/3}} = \frac{m_{\text{nucleon}}}{\frac{4}{3} \pi (1.2 \times 10^{-15} \text{ m})^3}
\]

Therefore,

\[
\rho = \frac{1.67 \times 10^{-27} \text{ kg}}{\frac{4}{3} \pi (1.2 \times 10^{-15} \text{ m})^3} = 2.3 \times 10^{17} \text{ kg/m}^3
\]

3. **REASONING** For an element whose chemical symbol is X, the symbol for the nucleus is \(^A_Z X \) where \(A \) represents the number of protons and neutrons (the nucleon number) and \(Z \) represents the number of protons (the atomic number) in the nucleus.

SOLUTION

a. The symbol \(^{195}_{78} X \) indicates that the nucleus in question contains \(Z = 78 \) protons, and \(N = A - Z = 195 - 78 = 117 \) neutrons. From the periodic table, we see that \(Z = 78 \) corresponds to platinum, Pt.

b. Similar reasoning indicates that the nucleus in question is sulfur, S, and the nucleus contains \(N = A - Z = 32 - 16 = 16 \) neutrons.
c. Similar reasoning indicates that the nucleus in question is copper, \(Cu \), and the nucleus contains \(N = A - Z = 63 - 29 = 34 \) neutrons.

d. Similar reasoning indicates that the nucleus in question is boron, \(B \), and the nucleus contains \(N = A - Z = 11 - 5 = 6 \) neutrons.

e. Similar reasoning indicates that the nucleus in question is plutonium, \(Pu \), and the nucleus contains \(N = A - Z = 239 - 94 = 145 \) neutrons.

11. **SSM REASONING** To obtain the binding energy, we will calculate the mass defect and then use the fact that 1 u is equivalent to 931.5 MeV. The atomic mass given for \(^7\text{Li}\) includes the 3 electrons in the neutral atom. Therefore, when computing the mass defect, we must account for these electrons. We do so by using the atomic mass of 1.007825 u for the hydrogen atom \(^1\text{H}\), which also includes the single electron, instead of the atomic mass of a proton.

SOLUTION Noting that the number of neutrons is \(7 - 3 = 4 \), we obtain the mass defect \(\Delta m \) as follows:

\[
\Delta m = \left(3 \times 1.007825 \text{ u}\right) + \left(4 \times 1.008665 \text{ u}\right) - 7.016003 \text{ u} = 4.2132 \times 10^{-2} \text{ u}
\]

Since 1 u is equivalent to 931.5 MeV, the binding energy is

\[
\text{Binding energy} = \left(4.2132 \times 10^{-2} \text{ u}\right) \left(\frac{931.5 \text{ MeV}}{1 \text{ u}}\right) = 39.25 \text{ MeV}
\]

13. **REASONING AND SOLUTION** For \(^{202}\text{Hg}\) the mass of the separated nucleons is

\[
m = 80(1.007825 \text{ u}) + 122(1.008665 \text{ u}) = 203.683 \text{ u}
\]

The mass defect is then \(\Delta m = 203.683 \text{ u} - 201.970617 \text{ u} = 1.712513 \text{ u} \).

This corresponds to a total binding energy of \(\left(1.712513 \text{ u}\right) \left(\frac{931.5 \text{ MeV}}{1 \text{ u}}\right) = 1595 \text{ MeV} \) and a binding energy per nucleon of \(\frac{1595 \text{ MeV}}{202 \text{ nucleons}} = 7.90 \text{ MeV/nucleon} \).

21. **SSM REASONING AND SOLUTION** The general form for \(\beta^- \) decay is

\[
\begin{array}{ccc}
\text{Parent nucleus} & \to & \text{Daughter nucleus} \\
A^Z_{\text{P}} & \to & A^{Z+1}_{\text{D}} + ^0_{-1}\text{e} \\
\beta^- \text{ particle (electron)}
\end{array}
\]

Therefore, the \(\beta^- \) decay process for \(^{35}\text{S}\) is \(^{35}_{16}\text{S} \to ^{35}_{17}\text{Cl} + ^0_{-1}\text{e} \).
23. **REASONING AND SOLUTION** The mass of the products is

\[m = 222.01757 \text{ u} + 4.00260 \text{ u} = 226.02017 \text{ u} \]

The mass defect for the decay is

\[\Delta m = 226.02540 \text{ u} - 226.02017 \text{ u} = 0.00523 \text{ u} \]

which corresponds to an energy of

\[(0.00523 \text{ u}) \left(\frac{931.5 \text{ MeV}}{1 \text{ u}} \right) = 4.87 \text{ MeV} \]

33. **SSM REASONING AND SOLUTION** The number of radioactive nuclei that remains in a sample after a time \(t \) is given by Equation 31.5, \(N = N_0 e^{-\lambda t} \), where \(\lambda \) is the decay constant. From Equation 31.6, we know that the decay constant is related to the half-life by \(\lambda = 0.693 / T_{1/2} \); therefore, \(\lambda = 0.693 / T_{1/2} \) and we can write

\[\frac{N}{N_0} = e^{-0.693/T_{1/2} t} \quad \text{or} \quad \frac{t}{T_{1/2}} = -\frac{1}{0.693} \ln \left(\frac{N}{N_0} \right) \]

When the number of radioactive nuclei decreases to one-millionth of the initial number, \(N / N_0 = 1.00 \times 10^{-6} \); therefore, the number of half-lives is

\[\frac{t}{T_{1/2}} = -\frac{1}{0.693} \ln (1.00 \times 10^{-6}) = 19.9 \]

35. **REASONING AND SOLUTION** The amount remaining is 0.0100% = 0.000 100. We know \(N / N_0 = e^{-0.693 t / T_{1/2}} \). Therefore, we find

\[t = -\frac{T_{1/2}}{0.693} \ln \left(\frac{N}{N_0} \right) = -\frac{29.1 \text{ yr}}{0.693} \ln(0.000 100) = 387 \text{ yr} \]

37. **SSM REASONING AND SOLUTION** According to Equation 31.5, \(N = N_0 e^{-\lambda t} \), the decay constant is

\[\lambda = -\frac{1}{t} \ln \left(\frac{N}{N_0} \right) = -\frac{1}{20 \text{ days}} \ln \left(\frac{8.14 \times 10^{14}}{4.60 \times 10^{15}} \right) = 0.0866 \text{ days}^{-1} \]

The half-life is, from Equation 31.6,

\[T_{1/2} = \frac{0.693}{\lambda} = \frac{0.693}{0.0866 \text{ days}^{-1}} = 8.00 \text{ days} \]

47. **SSM REASONING AND SOLUTION** The answer can be obtained directly from Equation 31.5, combined with Equation 31.6:

\[\frac{N}{N_0} = e^{-\lambda t} = e^{-0.693 t / T_{1/2}} = e^{-0.693(41000 \text{ yr})/(5730 \text{ yr})} = 0.0070 \]

The percent of atoms remaining is \(0.70 \% \).